Universal quadratures for boundary integral equations on two-dimensional domains with corners

نویسندگان

  • James Bremer
  • Vladimir Rokhlin
  • Ian Sammis
چکیده

cretization of certain boundary integral equations on a very general class of two-dimensional domains with corner points. The resulting quadrature rules allow for the rapid high accuracy solution of Laplace’s equation and the Helmholtz equation on such domains. Our approach can be adapted to many other boundary value problems as well as to the case of surfaces with singularities in three dimensions. The performance of the quadrature rules is illustrated with several numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners

We present several well-posed, well-conditioned integral equation formulations for the solution of two-dimensional acoustic scattering problems with Neumann boundary conditions in domains with corners. We call these integral equations Direct Regularized Combined Field Integral Equations (DCFIE-R) formulations because (1) they consist of combinations of direct boundary integral equations of the ...

متن کامل

Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial

Recursively Compressed Inverse Preconditioning (RCIP) is a numerical method for solving Fredholm second kind boundary integral equations in situations where the boundary shape induces a non-smooth behavior in the solution. The method originated in 2008 within a scheme for Laplace’s equation in two-dimensional domains with corners. In a series of subsequent papers the method was then refined and...

متن کامل

Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions

In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...

متن کامل

Estimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments

In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...

متن کامل

Boundary Integral Operators for Plate Bending in Domains with Corners

The paper studies boundary integral operators of the bi{Laplacian on piecewise smooth curves with corners and describes their mapping properties in the trace spaces of variational solutions of the biharmonic equation. We formulate a direct integral equation method for solving mixed boundary value problems for the biharmonic equation on a nonsmooth plane domain, analyse the solvability of the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2010